Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

El Hassane Soumhi, ${ }^{\text {a* }}$ Ismael Saadoune, ${ }^{\text {a }}$ Rachid Nahouane ${ }^{\text {a }}$ and Ahmed Driss ${ }^{\text {b }}$

${ }^{\text {a }}$ Equipe de Chimie des Matériaux et de I'Environnement, FSTG-Marrakech, Université Cadi Ayyad, Bd. Abdelkrim Khattabi, BP 549, Marrakech, Morocco, and ${ }^{\mathbf{b}}$ Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar II, Tunis, Tunisia

Correspondence e-mail:
eh_soumhi@fstg-marrakech.ac.ma

Key indicators

Single-crystal X-ray study
$T=546 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.036$
$w R$ factor $=0.102$
Data-to-parameter ratio $=12.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis(1,6-hexanediaminium) cyclotetraphosphate dihydrate

The title compound, $2 \mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{2+} \cdot \mathrm{P}_{4} \mathrm{O}_{12}{ }^{4-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, has been synthesized at room temperature and studied by single-crystal X-ray diffraction. The asymmetric unit consists of two hexanediaminium cations, four PO_{4} tetrahedra and two water molecules. The organic cations are linked to the cyclic $\mathrm{P}_{4} \mathrm{O}_{12}{ }^{4-}$ anions via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form two-dimensional layers, and are further linked by water molecules to form a three-dimensional network.

Comment

Phosphate salts of organic cations have been intensively studied due to their uses in various fields, such as catalysis, fuel cells, nonlinear optics and protonic conductors (Kita et al., 1995; Casciola et al., 1986). These structures assemble largely by way of hydrogen bonding between the phosphate anions and the organic cations, which contain donor centres. Water molecules often also play an important role in the cohesion and stability of such structures. Here, we report a structural investigation of the title salt, (I) (Fig. 1), formed from the diprotonated aliphatic diamine, $\mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{NH}_{3}{ }^{2+}$, with two donor centres, and cyclotetraphosphate.

(I)

From a general point of view, the structure of this phosphate could be described as a succession of two types of layers (Fig. 2) parallel to the ($\overline{1} 01$) plane. The first layer, located at $z=0$, is formed from the $\mathrm{P}_{4} \mathrm{O}_{12}{ }^{4-}$ anions and the first organic cation, with atoms N 1 and N 2 . The second (at $z=\frac{1}{2}$), is formed from the water molecules and the second organic cation, with atoms N3 and N4.

In this structure, the cyclic $\mathrm{P}_{4} \mathrm{O}_{12}{ }^{4-}$ anion is built up from four crystallographically independent PO_{4} tetrahedra. Within each PO_{4} tetrahedron, two types of $\mathrm{P}-\mathrm{O}$ distances are observed. The $\mathrm{P}-\mathrm{O} L$ bonds that link the P atoms to form the $\mathrm{P}_{4} \mathrm{O}_{4}$ ring are substantially longer than the $\mathrm{P}-\mathrm{O}$ bonds on the periphery. The P atoms of the $\mathrm{P}_{4} \mathrm{O}_{12}{ }^{4-}$ anion form an approximately ideal square $[\mathrm{P}-\mathrm{P}-\mathrm{P}$ angles vary from 88.80 (3) to $\left.90.54(2)^{\circ}\right]$. The $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angles average 109.30° around $\mathrm{P} 1,109.17^{\circ}$ around $\mathrm{P} 2,109.19^{\circ}$ around P 3 and 109.23° around P4. All these distances and angles are similar to those commonly observed for other anions in condensed phosphate chemistry (Durif, 1995; Soumhi \& Jouini, 1995a,b, 1996a,b,c; Soumhi et al., 1999a,b, 2001).

Received 27 July 2005 Accepted 1 August 2005 Online 12 August 2005

Figure 1
The asymmetric unit of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. C-bound H atoms have been omitted.

The atomic arrangement of $\mathrm{C}_{12} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ contains two independent $\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}\right)^{2+}$ cations. The $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ distances and $\mathrm{N}-\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles also correspond to values generally observed in this family of materials (Soumhi et al., 1998).

The structure of (I) contains 16 hydrogen bonds. Cation 1 establishes five hydrogen bonds with the $\mathrm{P}_{4} \mathrm{O}_{12}{ }^{4-}$ anion in the same layer through atoms N 1 and N 2 , and one hydrogen bond with a water molecule ($\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N} 1 \cdots \mathrm{O} W 2$). This extends the layer containing the $\mathrm{P}_{4} \mathrm{O}_{12}{ }^{4-}$ anions and $\mathrm{N} 1 / \mathrm{N} 2$ cations into two dimensions. The N3/N4 cation establishes five hydrogen bonds with $\mathrm{P}_{4} \mathrm{O}_{12}{ }^{4-}$ anions in one layer and one hydrogen bond (N3-HN3 . . O12) with a $\mathrm{P}_{4} \mathrm{O}_{12}{ }^{4-}$ anion in an adjacent layer. The four remaining hydrogen bonds involve water molecules and are also responsible for the cohesion between the first type of layers by means of $\mathrm{O} W-\mathrm{H} \cdots \mathrm{O}-\mathrm{P}$ bonds. While it is clear that these hydrogen bonds contribute significantly to stabilizing the structure of this salt, it should nevertheless be noted that, according to accepted criteria (Blessing, 1986; Brown, 1976), all 16 of these hydrogen bonds are weak.

Experimental

The title compound, (I), was prepared by neutralizing $\mathrm{H}_{4} \mathrm{P}_{4} \mathrm{O}_{12}$ with 1,6-hexanediamine in a 2:1 molar ratio. The $\mathrm{H}_{4} \mathrm{P}_{4} \mathrm{O}_{12}$ solution was prepared using an aqueous solution of $\mathrm{Na}_{4} \mathrm{P}_{4} \mathrm{O}_{12} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ and an ionexchange resin (Amberlite IR-120). Colourless single crystals of (I) appeared after evaporation of the solution at room temperature for a few days.

Crystal data

$2 \mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2}{ }^{2+} . \mathrm{O}_{12} \mathrm{P}_{4}{ }^{4-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=5888.36$
Monoclinic, $P 2_{1} / n$
$a=9.676(3) \AA$
$b=19.118(6) \AA$
$c=13.882(3) \AA$
$\beta=95.9(2)^{\circ}$
$V=254.2(13) \AA^{3}$
$Z=4$
$D_{x}=1.530 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=10-15^{\circ}$
$\mu=0.37 \mathrm{~mm}^{-1}$
$T=546$ (2) K
Plate, colourless $0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer $\omega / 2 \theta$ scans

$$
k=0 \rightarrow 24
$$

Absorption correction: none

$$
l=-17 \rightarrow 17
$$ 5890 measured reflections 5566 independent reflections 4554 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.015$

$$
\begin{aligned}
& \theta_{\max }=27.0^{\circ} \\
& h=0 \rightarrow 12
\end{aligned}
$$

2 standard reflections frequency: 60 min intensity decay: 1.2%

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0485 P)^{2}\right. \\
\quad+2.0372 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.59 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.38 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

P1-O11	1.482 (2)	P4-OL14	1.620 (2)
P1-O21	1.491 (2)	N1-C11	1.487 (3)
$\mathrm{P} 1-\mathrm{O} L 12$	1.609 (2)	N2-C61	1.499 (3)
P1-OL14	1.613 (2)	N3-C12	1.491 (3)
P2-O22	1.485 (2)	N4-C62	1.491 (3)
P2-O12	1.487 (2)	C11-C21	1.501 (3)
P2-OL23	1.603 (2)	C21-C31	1.532 (3)
$\mathrm{P} 2-\mathrm{O} L 12$	1.617 (2)	C31-C41	1.520 (4)
P3-O13	1.474 (2)	C41-C51	1.524 (4)
P3-O23	1.490 (2)	C51-C61	1.514 (4)
P3-OL23	1.612 (2)	C12-C22	1.514 (4)
P3-OL34	1.629 (2)	C22-C32	1.521 (4)
P4-O24	1.487 (2)	C32-C42	1.540 (4)
P4-O14	1.486 (2)	C42-C52	1.511 (4)
P4-OL34	1.610 (2)	C52-C62	1.491 (4)
$\mathrm{O} 11-\mathrm{P} 1-\mathrm{O} 21$	118.48 (9)	$\mathrm{O} 24-\mathrm{P} 4-\mathrm{O} 14$	119.9 (1)
O11-P1-OL12	110.42 (9)	O24-P4-OL34	107.53 (9)
$\mathrm{O} 21-\mathrm{P} 1-\mathrm{O}$ L12	107.00 (8)	O14-P4-OL34	110.11 (9)
O11-P1-OL14	106.75 (9)	O24-P4-OL14	110.32 (9)
$\mathrm{O} 21-\mathrm{P} 1-\mathrm{O}$ L14	110.11 (8)	O14-P4-OL14	105.69 (9)
OL12-P1-OL14	103.02 (8)	OL34-P4-OL14	101.90 (8)
$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 12$	119.84 (9)	N1-C11-C21	111.0 (2)
$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} 23$	105.12 (8)	C11-C21-C31	112.4 (2)
$\mathrm{O} 12-\mathrm{P} 2-\mathrm{O} 23$	111.81 (8)	C41-C31-C21	112.0 (2)
$\mathrm{O} 22-\mathrm{P} 2-\mathrm{O} L 12$	107.42 (9)	C31-C41-C51	113.6 (2)
$\mathrm{O} 12-\mathrm{P} 2-\mathrm{O} L 12$	110.03 (9)	C61-C51-C41	115.4 (2)
$\mathrm{O} L 23-\mathrm{P} 2-\mathrm{O} L 12$	100.84 (8)	N2-C61-C51	111.6 (2)
$\mathrm{O} 13-\mathrm{P} 3-\mathrm{O} 23$	120.27 (9)	N3-C12-C22	110.2 (2)
O13-P3-OL23	107.08 (9)	C12-C22-C32	113.5 (3)
$\mathrm{O} 23-\mathrm{P} 3-\mathrm{O} 23$	109.28 (8)	C22-C32-C42	113.8 (3)
O13-P3-OL34	107.65 (9)	C52-C42-C32	111.5 (3)
O23-P3-OL34	109.67 (8)	C62-C52-C42	115.1 (3)
OL23-P3-OL34	101.20 (8)	C52-C62-N4	111.4 (2)

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
OW1-H1W1 \cdots O ${ }^{\text {O }} 1^{\text {i }}$	0.95	1.89	2.826 (3)	167 (1)
OW1-H2W1 \cdots O14 ${ }^{\text {ii }}$	0.99	2.27	3.252 (4)	172 (1)
OW2-H1W2 . O 11	0.90 (4)	1.90 (4)	2.760 (3)	160 (4)
$\mathrm{OW} 2-\mathrm{H} 2 W 2 \cdots \mathrm{O} 3^{\text {iii }}$	0.81 (4)	2.09 (4)	2.875 (3)	163 (4)
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N} 1 \cdots \mathrm{O} 21^{\text {iv }}$	0.89 (3)	1.95 (3)	2.827 (3)	171 (3)
$\mathrm{N} 1-\mathrm{H} 2 \mathrm{~N} 1 \cdots \mathrm{OW} 2^{\text {v }}$	0.89 (4)	2.00 (4)	2.888 (3)	173 (3)
$\mathrm{N} 1-\mathrm{H} 3 \mathrm{~N} 1 \cdots \mathrm{O} 4^{\text {vi }}$	0.89 (3)	2.03 (3)	2.926 (3)	178 (3)
$\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2 \cdots \mathrm{O} 23^{\text {ii }}$	0.84 (4)	1.93 (4)	2.761 (3)	170 (3)
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N} 2 \cdots \mathrm{O} 22^{\text {iv }}$	0.86 (3)	2.01 (4)	2.869 (3)	175 (3)
N2-H3N2 \cdots O24	0.92 (4)	2.13 (4)	3.022 (3)	163 (3)
N3-H1N3..O12 ${ }^{\text {ii }}$	0.87 (4)	1.95 (4)	2.810 (3)	168 (3)
N3-H2N3 \cdots O24 ${ }^{\text {iii }}$	0.91 (3)	2.10 (4)	2.997 (3)	168 (3)
N3-H3N3 \cdots O22 ${ }^{\text {vii }}$	0.94 (4)	1.94 (4)	2.828 (3)	157 (3)
N4-H1N4...O21 ${ }^{\text {vii }}$	0.88 (4)	2.03 (4)	2.871 (3)	160 (3)
N4-H2N4...O14 ${ }^{\text {v }}$	0.97 (4)	2.22 (4)	3.189 (4)	179 (3)
N4-H3N4...O12 ${ }^{\text {v }}$	0.84 (4)	2.05 (4)	2.836 (3)	155 (4)

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $x+1, y, z$; (iv) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2} ; \quad$ (v) $\quad-x+1,-y+1,-z ; \quad$ (vi) $\quad-x,-y+1,-z ; \quad$ (vii) $-x+\frac{3}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.

All H atoms, except for those on atoms OW1 and C52, were refined without constraints. The atomic coordinates of atoms $\mathrm{H} 1 W 1$ and $\mathrm{H} 2 W 2$ were fixed, as were their displacement parameters. For atoms H 152 and H 252 , the $\mathrm{C}-\mathrm{H}$ distances were restrained> to 0.92 (1) \AA and their displacement parameters fixed at $0.050 \AA^{2}$.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček \& Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS for Windows (Dowty, 1995) and ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

References

Blessing, R. H. (1986). Acta Cryst. B42, 613-621.
Brown, I. D. (1976). Acta Cryst. A32, 24-31.
Casciola, M., Costantino, U. \& D'amico, S. (1986). Solid State Ionics, 22, 127133.

Dowty, E. (1995). ATOMS for Windows. Version 3.2. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.

Figure 2
A projection along the b axis of the structure of (I). In order of decreasing size, the circles represent water molecules, N and C atoms, respectively. H atoms have been omitted for clarity.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Durif, A. (1995). Crystal Chemistry of Condensed Phosphates, pp. 238-279. London, New York: Plenum Press.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kita, Y., Kashitani, T., Kishino, K. \& Nakagawa, K. (1995). Nippon Kagaku Haishi, 12, 971-980.
Macíček, J. \& Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
Soumhi, E. H. \& Jouini, T. (1995a). Acta Cryst. C51, 1457-1459.
Soumhi, E. H. \& Jouini, T. (1995b). Acta Cryst. C51, 1883-1885.
Soumhi, E. H. \& Jouini, T. (1996a). Acta Cryst. C52, 432-433.
Soumhi, E. H. \& Jouini, T. (1996b). Acta Cryst. C52, 434-436.
Soumhi, E. H. \& Jouini, T. (1996c). Acta Cryst. C52, 2802-2805.
Soumhi, E. H., Saadoune, I. \& Driss, A. (2001). J. Solid State Chem. 156, $364-$ 369.

Soumhi, E. H., Saadoune, I., Driss, A. \& Jouini, T. (1998). Eur. J. Solid State Inorg. Chem. 35, 629-637.
Soumhi, E. H., Saadoune, I., Driss, A. \& Jouini, T. (1999a). J. Solid State Chem. 144, 318-324.
Soumhi, E. H., Saadoune, I., Driss, A. \& Jouini, T. (1999b). Acta Cryst. C55, 1932-1935.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

